Laboratory of Protein Metabolism

Graduate School of Pharmaceutical Sciences,  The University of Tokyo

Laboratory of Protein Metabolism

Graduate School of Pharmaceutical Sciences, The University of Tokyo

Publications

2023

  1. Iriki T, Iio H, Yasuda S, Masuta S, Kato M, Kosako H, Hirayama S, Endo A, Ohtake F, Kamiya M, Urano Y, Saeki Y, Hamazaki J, Murata S. Senescent cells form nuclear foci that contain the 26S proteasome. Cell Rep. 2023 Aug 29;42(8):112880. doi: 10.1016/j.celrep.2023.112880. Epub 2023 Aug 3.

2022

  1. Watanabe A, Yashiroda H, Ishihara S, Lo M, *Murata S. The molecular mechanisms governing the assembly of the immuno- and thymoproteasomes in the presence of constitutive proteasomes. Cells 11, 1580 (2022)
  2. *Tanahashi N, Komiyama M, Tanaka M, Yokobori Y, Murata S, Tanaka K. The effect of nutrient deprivation on proteasome activity in 4-week-old mice and 24-week-old mice. J Nutr Biochem 105, 108993 (2022)
  3. Watanabe A, Hama K, Watanabe K, Fujiwara Y, Yokoyama K, Murata S, *Takita R. Controlled tetradeuteration of straight-chain fatty acids: synthesis, application, and insight into the metabolism of oxidized linoleic acid. Angew Chem Int Ed Engl: e202202779 (2022)
  4. Watanabe A, Yashiroda H, Ishihara S, Lo M, Murata S., The Molecular Mechanisms Governing the Assembly of the Immuno- and Thymoproteasomes in the Presence of Constitutive Proteasomes., Cells. 2022 May 7;11(9):1580. doi: 10.3390/cells11091580.
  5. Watanabe A, Hama K, Watanabe K, Fujiwara Y, Yokoyama K, Murata S, Takita R., Controlled Tetradeuteration of Straight-Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid., Angew Chem Int Ed Engl. 2022 Apr 12:e202202779. doi: 10.1002/anie.202202779.
  6. Tanahashi N, Komiyama M, Tanaka M, Yokobori Y, Murata S, Tanaka K , The effect of nutrient deprivation on proteasome activity in 4-week-old mice and 24-week-old mice..J Nutr Biochem. 2022 Jul;105:108993. doi: 10.1016/j.jnutbio.2022.108993. Epub 2022 Mar 21.

2021

  1. Kanazawa N, Hemmi H, Kinjo N, Ohnishi H, Hamazaki J, Mishima H, Kinoshita A, Mizushima T, Hamada S, Hamada K, Kawamoto N, Kadowaki S, Honda Y, Izawa K, Nishikomori R, Tsumura M, Yamashita Y, Tamura S, Orimo T, Ozasa T, Kato T, Sasaki I, Fukuda-Ohta Y, Wakaki-Nishiyama N, Inaba Y, Kunimoto K, Okada S, Taketani T, Nakanishi K, Murata S, Yoshiura KI, Kaisho T., Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nat Commun. 2021 Nov 24;12(1):6819. doi: 10.1038/s41467-021-27085-y.
  2. Takehara Y, Yashiroda H, Matsuo Y, Zhao X, Kamigaki A, Matsuzaki T, Kosako H, Inada T, Murata S, The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation., .iScience. 2021 Feb 5;24(3):102145. doi: 10.1016/j.isci.2021.102145.
  3. Naito M, Murata S. Gluing Proteins for Targeted Degradation. Cancer Cell. 2021 Jan 11;39(1):19-21. doi: 10.1016/j.ccell.2020.12.020.

2020

  1. Hashimoto E, Okuno S, Hirayama S, Arata Y, Goto T, Kosako H, Hamazaki J, Murata S. Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells. iScience. 2020 Jul 24;23(7):101299. doi: 10.1016/j.isci.2020.101299. Epub 2020 Jun 24. PMID: 32634741
  2. Hamazaki J, Murata S. (2020) ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int J Mol Sci. 2020 May 23;21(10):E3683. doi: 10.3390/ijms21103683.
  3. Waku T, Nakamura N, Koji M, Watanabe H, Katoh H, Tatsumi C, Tamura N, Hatanaka A, Hirose S, Katayama H, Tani M, Kubo Y, Hamazaki J, Hamakubo T, Watanabe A, Murata S, Kobayashi A. (2020) NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein. Mol Cell Biol. 2020 Apr 28;40(10):e00597-19. doi: 10.1128/MCB.00597-19. Print 2020 Apr 28.
  4. Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y. (2020) Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature. 2020 Feb;578(7794):296-300. doi: 10.1038/s41586-020-1982-9. Epub 2020 Feb 5.

2019

  1. Arata Y, Watanabe A, Motosugi R, Murakami R, Goto T, Hori S, Hirayama S, Hamazaki J, Murata S. (2019) Defective induction of the proteasome associated with T cell receptor signaling underlies T cell senescence. Genes Cells. Oct 17. doi: 10.1111/gtc.12728.
  2. Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S. (2019) In-depth Analysis of the Lid Subunits Assembly Mechanism in Mammals. Biomolecules. May 31;9(6). pii: E213. doi: 10.3390/biom9060213.
  3. Motosugi R, Murata S. (2019) Dynamic Regulation of Proteasome Expression. Front Mol Biosci. May 1;6:30. doi: 10.3389/fmolb.2019.00030. eCollection 2019.
  4. Apavaloaei A, Brochu S, Dong M, Rouette A, Hardy MP, Villafano G, Murata S, Melichar HJ, Perreault C. (2019) PSMB11 Orchestrates the Development of CD4 and CD8 Thymocytes via Regulation of Gene Expression in Cortical Thymic Epithelial Cells. J Immunol. Feb 1;202(3):966-978. doi: 10.4049/jimmunol.1801288.
  5. Arata Y, Watanabe A, Motosugi R, Iemura SI, Natsume T, Mukai K, Taguchi T, Hirayama S, Hamazaki J, Murata S. (2019) FAM48A mediates compensatory autophagy induced by proteasome impairment. Genes to Cells, 10.1111/gtc.12708
  6. Tomita T, Hirayama S, Sakurai Y, Ohte Y, Yoshihara H, Saeki Y, Hamazaki J, Murata S. (2019) Specific modification of aged proteasomes revealed by tag-exchangeable knock-in mice. Mol Cell Biol. 39, e00426-18.
  7. Tomaru U, Konno S, Miyajima S, Kimoto R, Onodera M, Kiuchi S, Murata S, Ishizu A, Kasahara M. (2019) Restricted Expression of the Thymoproteasome Is Required for Thymic Selection and Peripheral Homeostasis of CD8+ T Cells. Cell Rep. 26, 639-651.
  8. Otsubo R, Mimuro H, Ashida H, Hamazaki J, Murata S, Sasakawa C. (2019) Shigella effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol. 21, e12974.
  9. Takahata Y, Ohigashi I, Murata S, Tanaka K. (2019) Thymoproteasome and peptidic self. Immunogenetics. 71, 217-221.

 
2018

  1. Murata S, Takahama Y, Kasahara M, Tanaka K. (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 19, 923-931.Sep;19(9):923-931.
  2. Koizumi S, Hamazaki J, Murata S. (2018) Transcriptional regulation of the 26S proteasome by NRf1. Proc Jpn Acad Ser B Phys Biol Sci. 94, 325-336. doi:10.2183/pjab.94.021. Review.
  3. Wu W, Sahara K, Hirayama S, Zhao X, Watanabe A, Hamazaki J, Yashiroda H, Murata S. (2018) PAC1-PAC2 proteasome assembly chaperone retains the core α4-α7 assembly intermediates in the cytoplasm. Genes Cells. 23, 839-848.
  4. Hirayama S, Sugihara M, Morito D, Iemura SI, Natsume T, Murata S, Nagata K. (2018) Nuclear export of ubiquitinated proteins via the UBIN-POST system. Proc Natl Acad Sci U S A. 115, E4199-E4208.
  5. Uechi H, Kuranaga E, Iriki T, Takano K, Hirayama S, Miura M, Hamazaki J., and Murata S. (2018) Ubiquitin-Binding Protein CG5445 Suppresses Aggregation and Cytotoxicity of Amyotrophic Lateral Sclerosis-Linked TDP-43 in Drosophila. Mol Cell Biol. 38, e00195-17 16;38(3). pii: e00195-17. doi: 10.1128/MCB.00195-17.

 
2017

  1. Matsudaira T, Mukai K, Noguchi T, Hasegawa J, Hatta T, Iemura SI, Natsume T, Miyamura N, Nishina H, Nakayama J, Semba K, Tomita T, Murata S, Arai H, Taguchi T. (2017) Endosomal phosphatidylserine is critical for the YAP signalling pathway in proliferating cells. Nat Commun. 8, 1246.
  2. Lu X, Nowicka U, Sridharan V, Liu F, Randles L, Hymel D, Dyba M, Tarasov SG, Tarasova NI, Zhao XZ, Hamazaki J, Murata S, Burke TR Jr, Walters KJ. (2017) Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nat Commun. 8, 15540.
  3. Nitta T, Kochi Y, Muro R, Tomofuji Y, Okamura T, Murata S, Suzuki H, Sumida T, Yamamoto K, Takayanagi H. (2017)Human thymoproteasome variations influence CD8 T cell selection. Sci Immunol 2, 5165.
  4. Ohigashi I, Ohte Y, Setoh K, Nakase H, Maekawa A, Kiyonari H, Hamazaki Y, Sekai M, Sudo T, Tabara Y, Sawai H, Omae Y, Yuliwulandari R, Tanaka Y, Mizokami M, Inoue H, Kasahara M, Minato N, Tokunaga K, Tanaka K, Matsuda F, Murata S, Takahama Y. (2017) A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production. JCI Insight 2, e93664.
  5. Uddin MM, Ohigashi I, Motosugi R, Nakayama T, Sakata M, Hamazaki J, Nishito Y, Rode I, Tanaka K, Takemoto T, Murata S, Takahama Y. (2017) Foxn1-β5t transcriptional axis controls CD8+ T-cell production in the thymus. Nat Commun. 8, 14419.
  6. Jiang RT, Yemelyanova A, Xing D, Anchoori RK, Hamazaki J, Murata S, Seidman JD, Wang TL, Roden RBS. (2017) Early and consistent overexpression of ADRM1 in ovarian high-grade serous carcinoma. J Ovarian Res. 10, 53.

 
2016

  1. Kincaid EZ, Murata S, Tanaka K, Rock KL. (2016) Essential role of specialized proteasome subunits in thymic selection of CD8 T cells. Nat Immunol 17, 938-945
  2. Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, Naguro I, Ichijo H, Hamazaki J, Murata S. (2016) The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. Elife. 5, e18357.

 
2015
  1. Sasaki, K., Takada, K., Ohte, Y., Kondo, H., Sorimachi, H., Tanaka, K., Takahama, Y.,and Murata, S. (2015) Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells. Nature Communications 6, 7484.
  2. Takada, K., Van Laethem, F., Xing, Y., Akane, K., Suzuki, H., Murata, S., Tanaka, K., Jameson, S. C., Singer, A., and Takahama, Y. (2015). TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8(+) T cells. Nat. Immunol. 16, 1069–1076.
  3. Hamazaki, J., Hirayama, S., and Murata, S. (2015) Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genet. 11, e1005401
  4. Cha, J., E, Burnum-Johnson, K E.., Bartos, A., Li, Y., Baker, E. S., Tilton, S. C., J, Webb-Robertson, B. M., Piehowski, P. D., Monroe, M. E., Jegga, A. G., Murata, S., Hirota, Y., and Dey, S. K. (2015) Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus. J. Biol. Chem. 290, 15337–15349
  5. Morita, K., Masamoto, Y., Kataoka, K., Koya, J., Kagoya, Y., Yashiroda, H., Sato, T., Murata, S., and Kurokawa, M. (2015) BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4. Leukemia. 29, 2248–2256
  6. Nitta, T., Muro, R., Shimizu, Y., Nitta, S., Oda, H., Ohte, Y., Goto, M., Rieko, Y.-T., Narita, T., Takayanagi, H., Yasuda, H., Okamura, T., Murata, S., and Suzuki, H. (2015) The thymic cortical epithelium determines the TCR repertoire of IL-17-producing γδT cells. EMBO reports. 16, 638–653
  7. Shirozu, R., Yashiroda, H., and Murata, S. (2015) Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett. 589, 933–940
  8. Shirozu, R., Yashiroda, H., and Murata, S. (2015) Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion. Mol. Cell. Biol. 36, 347–362
  9. Tomita, T., Hamazaki, J., Hirayama, S., McBurney, M. W., Yashiroda, H., and Murata, S. (2015) Sirt1-deficiency causes defective protein quality control. Sci. Rep. 5, 12613
  10. Yashiroda, H., Toda, Y., Otsu, S., Takagi, K., Mizushima, T., and Murata, S. (2015) N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol. Cell. Biol. 35, 141–152

 
2014
  1. Bai, M., Zhao, X., Sahara, K., Ohte, Y., Hirano, Y., Kaneko, T., Yashiroda, H., and Murata, S. (2014) Assembly mechanisms of specialized core particles of the proteasome. Biomolecules. 4, 662–677
  2. Pack, C.-G. G., Yukii, H., Toh-e, A., Kudo, T., Tsuchiya, H., Kaiho, A., Sakata, E., Murata, S., Yokosawa, H., Sako, Y., Baumeister, W., Tanaka, K., and Saeki, Y. (2014) Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat. Commun. 5, 3396
  3. Sahara, K., Kogleck, L., Yashiroda, H., and Murata, S. (2014) The mechanism for molecular assembly of the proteasome. Adv. Biol. Regul. 54, 51–58
  4. Takagi, K., Saeki, Y., Yashiroda, H., Yagi, H., Kaiho, A., Murata, S., Yamane, T., Tanaka, K., Mizushima, T., and Kato, K. (2014) Pba3-Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochem. Biophys. Res. Commun. 450, 1110–1114
  5. Uechi, H., Hamazaki, J., and Murata, S. (2014) Characterization of the testis-specific proteasome subunit α4s in mammals. J. Biol. Chem. 289, 12365–12374

 
2013
  1. Akahane, T., Sahara, K., Yashiroda, H., Tanaka, K., and Murata, S. (2013) Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat. Commun. 4, 223
  2. Iwai, C., Li, P., Kurata, Y., Hoshikawa, Y., Morikawa, K., Maharani, N., Higaki, K., Sasano, T., Notsu, T., Ishido, Y., Miake, J., Yamamoto, Y., Shirayoshi, Y., Ninomiya, H., Nakai, A., Murata, S., Yoshida, A., Yamamoto, K., Hiraoka, M., and Hisatome, I. (2013) Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins. Cardiovasc. Res. 100, 520–528
  3. Odaka, C., Loranger, A., Takizawa, K., Ouellet, M., Tremblay, M. J., Murata, S., Inoko, A., Inagaki, M., and Marceau, N. (2013) Keratin 8 is required for the maintenance of architectural structure in thymus epithelium. PloS one. 8, e75101
  4. Ohigashi, I., Zuklys, S., Sakata, M., Mayer, C. E., Zhanybekova, S., Murata, S., Tanaka, K., Hollander, G. A., and Takahama, Y. (2013) Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 110, 9885–9890
  5. Otoda, T., Takamura, T., Misu, H., Ota, T., Murata, S., Hayashi, H., Takayama, H., Kikuchi, A., Kanamori, T., Shima, K. R., Lan, F., Takeda, T., Kurita, S., Ishikura, K., Kita, Y., Iwayama, K., Kato, K., Uno, M., Takeshita, Y., Yamamoto, M., Tokuyama, K., Iseki, S., Tanaka, K., and Kaneko, S. (2013) Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes. 62, 811–824
  6. Sasaki, Y., Sano, S., Nakahara, M., Murata, S., Kometani, K., Aiba, Y., Sakamoto, S., Watanabe, Y., Tanaka, K., Kurosaki, T., and Iwai, K. (2013) Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 32, 2463–2476
  7. Shin, S.-W. W., Shimizu, N., Tokoro, M., Nishikawa, S., Hatanaka, Y., Anzai, M., Hamazaki, J., Kishigami, S., Saeki, K., Hosoi, Y., Iritani, A., Murata, S., and Matsumoto, K. (2013) Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition. Biol. Open. 2, 170–182

 
2012
  1. Chou, B., Hiromatsu, K., Okano, S., Ishii, K., Duan, X., Sakai, T., Murata, S., Tanaka, K., and Himeno, K. (2012) Antiangiogenic tumor therapy by DNA vaccine inducing aquaporin-1-specific CTL based on ubiquitin-proteasome system in mice. J. Immunol.. 189, 1618–1626
  2. Kaneko, T., and Murata, S. (2012) Using siRNA techniques to dissect proteasome assembly pathways in mammalian cells. Methods Mol. Biol.. 832, 433–442
  3. Nakagawa, Y., Ohigashi, I., Nitta, T., Sakata, M., Tanaka, K., Murata, S., Kanagawa, O., and Takahama, Y. (2012) Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proc. Natl. Acad. Sci. U. S. A. 109, 20572–20577
  4. Takahama, Y., Takada, K., Murata, S., and Tanaka, K. (2012) β5t-containing thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Curr. Opin. Immunol. 24, 92–98
  5. Tomaru, U., Takahashi, S., Ishizu, A., Miyatake, Y., Gohda, A., Suzuki, S., Ono, A., Ohara, J., Baba, T., Murata, S., Tanaka, K., and Kasahara, M. (2012) Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 180, 963–972

 
2011
  1. Arima, K., Kinoshita, A., Mishima, H., Kanazawa, N., Kaneko, T., Mizushima, T., Ichinose, K., Nakamura, H., Tsujino, A., Kawakami, A., Matsunaka, M., Kasagi, S., Kawano, S., Kumagai, S., Ohmura, K., Mimori, T., Hirano, M., Ueno, S., Tanaka, K., Tanaka, M., Toyoshima, I., Sugino, H., Yamakawa, A., Tanaka, K., Niikawa, N., Furukawa, F., Murata, S., Eguchi, K., Ida, H., and Yoshiura, K.-I. (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc. Natl. Acad. Sci. U. S. A. 108, 14914–14919
  2. Kitamura, A., Maekawa, Y., Uehara, H., Izumi, K., Kawachi, I., Nishizawa, M., Toyoshima, Y., Takahashi, H., Standley, D. M., Tanaka, K., Hamazaki, J., Murata, S., Obara, K., Toyoshima, I., and Yasutomo, K. (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 121, 4150–4160
  3. Oh, K. H., Yang, S. W., Park, J. M., Seol, J. H., Iemura, S., Natsume, T., Murata, S., Tanaka, K., Jeon, Y. J., and Chung, C. H. (2011) Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death Differ. 18, 1326–1336

 
2010
  1. Chou, B., Hiromatsu, K., Hisaeda, H., Duan, X., Imai, T., Murata, S., Tanaka, K., and Himeno, K. (2010) Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 392, 277–282
  2. Florea, B. I., Verdoes, M., Li, N., van der Linden, W. A., Geurink, P. P., van den Elst, H., Hofmann, T., de Ru, A., van Veelen, P. A., Tanaka, K., Sasaki, K., Murata, S., den Dulk, H., Brouwer, J., Ossendorp, F. A., Kisselev, A. F., and Overkleeft, H. S. (2010) Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit β5t. Chem. Biol. 17, 795–801
  3. Maruyama, T., Kadowaki, H., Okamoto, N., Nagai, A., Naguro, I., Matsuzawa, A., Shibuya, H., Tanaka, K., Murata, S., Takeda, K., Nishitoh, H., and Ichijo, H. (2010) CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO J. 29, 2501–2514
  4. Nitta, T., Murata, S., Sasaki, K., Fujii, H., Ripen, A. M., Ishimaru, N., Koyasu, S., Tanaka, K., and Takahama, Y. (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity. 32, 29–40
  5. Sasaki, K., Hamazaki, J., Koike, M., Hirano, Y., Komatsu, M., Uchiyama, Y., Tanaka, K., and Murata, S. (2010) PAC1 gene knockout reveals an essential role of chaperone-mediated 20S proteasome biogenesis and latent 20S proteasomes in cellular homeostasis. Mol. Cell. Biol. 30, 3864–3874
  6. Takahama, Y., Nitta, T., Mat Ripen, A., Nitta, S., Murata, S., and Tanaka, K. (2010) Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin. Immunol. 22, 287–293

 
2009
  1. Hendil, K. B., Kriegenburg, F., Tanaka, K., Murata, S., Lauridsen, A.-M. B. M., Johnsen, A. H., and Rasmus, H.-P. (2009) The 20S proteasome as an assembly platform for the 19S regulatory complex. J. Mol. Biol. 394, 320–328
  2. Kaneko, T., Hamazaki, J., Iemura, S.-I., Sasaki, K., Furuyama, K., Natsume, T., Tanaka, K., and Murata, S. (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell. 137, 914–925
  3. Kimura, Y., Yashiroda, H., Kudo, T., Koitabashi, S., Murata, S., Kakizuka, A., and Tanaka, K. (2009) An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell. 137, 549–559
  4. Murata, S., Yashiroda, H., and Tanaka, K. (2009) Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 10, 104–115
  5. Nishio, K., Kim, S.-W. W., Kawai, K., Mizushima, T., Yamane, T., Hamazaki, J., Murata, S., Tanaka, K., and Morimoto, Y. (2009) Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem. Biophys. Res. Commun. 390, 855–860
  6. Tokui, K., Adachi, H., Waza, M., Katsuno, M., Minamiyama, M., Doi, H., Tanaka, K., Hamazaki, J., Murata, S., Tanaka, F., and Sobue, G. (2009) 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum. Mol. Genet. 18, 898–910
  7. Tokunaga, F., Sakata, S., Saeki, Y., Satomi, Y., Kirisako, T., Kamei, K., Nakagawa, T., Kato, M., Murata, S., Yamaoka, S., Yamamoto, M., Akira, S., Takao, T., Tanaka, K., and Iwai, K. (2009) Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132
  8. Tomaru, U., Ishizu, A., Murata, S., Miyatake, Y., Suzuki, S., Takahashi, S., Kazamaki, T., Ohara, J., Baba, T., Iwasaki, S., Fugo, K., Otsuka, N., Tanaka, K., and Kasahara, M. (2009) Exclusive expression of proteasome subunit β5t in the human thymic cortex. Blood. 113, 5186–5191
  9. Tonoki, A., Kuranaga, E., Tomioka, T., Hamazaki, J., Murata, S., Tanaka, K., and Miura, M. (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 29, 1095–1106
  10. Tu, L., Moriya, C., Imai, T., Ishida, H., Tetsutani, K., Duan, X., Murata, S., Tanaka, K., Shimokawa, C., Hisaeda, H., and Himeno, K. (2009) Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection. Eur. J. Immunol. 39, 3385–3394

 
2008
  1. Chou, B., Hisaeda, H., Shen, J., Duan, X., Imai, T., Tu, L., Murata, S., Tanaka, K., and Himeno, K. (2008) Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes Infect. 10, 241–250
  2. Hirano, Y., Kaneko, T., Okamoto, K., Bai, M., Yashiroda, H., Furuyama, K., Kato, K., Tanaka, K., and Murata, S. (2008) Dissecting β-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 27, 2204–2213
  3. Murata, S., Takahama, Y., and Tanaka, K. (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20, 192–196
  4. Nitta, T., Murata, S., Ueno, T., Tanaka, K., and Takahama, Y. (2008) Thymic microenvironments for T-cell repertoire formation. Adv. Immunol. 99, 59–94
  5. Takahama, Y., Tanaka, K., and Murata, S. (2008) Modest cortex and promiscuous medulla for thymic repertoire formation. Trends Immunol. 29, 251–255
  6. Yamano, T., Mizukami, S., Murata, S., Chiba, T., Tanaka, K., and Udono, H. (2008) Hsp90-mediated assembly of the 26 S proteasome is involved in major histocompatibility complex class I antigen processing. J. Biol. Chem. 283, 28060–28065
  7. Yamano, T., Sugahara, H., Mizukami, S., Murata, S., Chiba, T., Tanaka, K., Yui, K., and Udono, H. (2008) Allele-selective effect of PA28 in MHC class I antigen processing. J. Immunol. 181, 1655–1664
  8. Yashiroda, H., Mizushima, T., Okamoto, K., Kameyama, T., Hayashi, H., Kishimoto, T., Niwa, S., Kasahara, M., Kurimoto, E., Sakata, E., Takagi, K., Suzuki, A., Hirano, Y., Murata, S., Kato, K., Yamane, T., and Tanaka, K. (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 15, 228–236

 
2007
  1. Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S.-I., Tanaka, K., and Murata, S. (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol. Cell. Biol. 27, 6629–6638
  2. Komatsu, M., Waguri, S., Koike, M., Sou, Y.-S. S., Ueno, T., Hara, T., Mizushima, N., Iwata, J.-I., Ezaki, J., Murata, S., Hamazaki, J., Nishito, Y., Iemura, S.-I., Natsume, T., Yanagawa, T., Uwayama, J., Warabi, E., Yoshida, H., Ishii, T., Kobayashi, A., Yamamoto, M., Yue, Z., Uchiyama, Y., Kominami, E., and Tanaka, K. (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 131, 1149–1163
  3. Miyamoto, H., Moriishi, K., Moriya, K., Murata, S., Tanaka, K., Suzuki, T., Miyamura, T., Koike, K., and Matsuura, Y. (2007) Involvement of the PA28γ-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J. Virol. 81, 1727–1735
  4. Moriishi, K., Mochizuki, R., Moriya, K., Miyamoto, H., Mori, Y., Abe, T., Murata, S., Tanaka, K., Miyamura, T., Suzuki, T., Koike, K., and Matsuura, Y. (2007) Critical role of PA28γ in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 104, 1661–1666
  5. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S.-I., Hayashi, H., Takahama, Y., and Tanaka, K. (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science. 316, 1349–1353

 
2006
  1. Duan, X., Hisaeda, H., Shen, J., Tu, L., Imai, T., Chou, B., Murata, S., Chiba, T., Tanaka, K., Fehling, H. J., Koga, T., Sueishi, K., and Himeno, K. (2006) The ubiquitin-proteasome system plays essential roles in presenting an 8-mer CTL epitope expressed in APC to corresponding CD8+ T cells. Int. Immunol. 18, 679–687
  2. Hamazaki, J., Iemura, S.-I., Natsume, T., Yashiroda, H., Tanaka, K., and Murata, S. (2006) A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25, 4524–4536
  3. Hirano, Y., Hayashi, H., Iemura, S.-I., Hendil, K. B., Niwa, S.-I., Kishimoto, T., Kasahara, M., Natsume, T., Tanaka, K., and Murata, S. (2006) Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell. 24, 977–984
  4. Ishii, K., Hisaeda, H., Duan, X., Imai, T., Sakai, T., Fehling, H. J., Murata, S., Chiba, T., Tanaka, K., Hamano, S., Sano, M., Yano, A., and Himeno, K. (2006) The involvement of immunoproteasomes in induction of MHC class I-restricted immunity targeting Toxoplasma SAG1. Microbes Infect. 8, 1045–1053
  5. Kirisako, T., Kamei, K., Murata, S., Kato, M., Fukumoto, H., Kanie, M., Sano, S., Tokunaga, F., Tanaka, K., and Iwai, K. (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887
  6. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 441, 880–884
  7. Murata, S. (2006) Multiple chaperone-assisted formation of mammalian {20S} proteasomes. IUBMB life. 58, 344–348

 
2005
  1. Hirano, Y., Hendil, K. B., Yashiroda, H., Iemura, S., Nagane, R., Hioki, Y., Natsume, T., Tanaka, K., and Murata, S. (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature. 437, 1381–1385
  2. Hirano, Y., Murata, S., and Tanaka, K. (2005) Large- and small-scale purification of mammalian 26S proteasomes. Methods Enzymol. 399, 227–240
  3. Jana, N. R., Dikshit, P., Goswami, A., Kotliarova, S., Murata, S., Tanaka, K., and Nukina, N. (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J. Biol. Chem. 280, 11635–11640
  4. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K., and Chiba, T. (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434
  5. Murata, S., Minami, M., and Minami, Y. (2005) Purification and assay of the chaperone-dependent ubiquitin ligase of the carboxyl terminus of Hsc70-interacting protein. Methods Enzymol. 398, 271–279
  6. Sahara, N., Murayama, M., Mizoroki, T., Urushitani, M., Imai, Y., Takahashi, R., Murata, S., Tanaka, K., and Takashima, A. (2005) In vivo evidence of CHIP up-regulation attenuating tau aggregation. J. Neurochem. 94, 1254–1263
  7. Sasaki, J., Sasaki, T., Yamazaki, M., Matsuoka, K., Taya, C., Shitara, H., Takasuga, S., Nishio, M., Mizuno, K., Wada, T., Miyazaki, H., Watanabe, H., Iizuka, R., Kubo, S., Murata, S., Chiba, T., Maehama, T., Hamada, K., Kishimoto, H., Frohman, M. A., Tanaka, K., Penninger, J. M., Yonekawa, H., Suzuki, A., and Kanaho, Y. (2005) Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type Iα . J. Exp. Med. 201, 859–870
  8. Zhang, M., Obata, C., Hisaeda, H., Ishii, K., Murata, S., Chiba, T., Tanaka, K., Li, Y., Furue, M., Chou, B., Imai, T., Duan, X., and Himeno, K. (2005) A novel DNA vaccine based on ubiquitin-proteasome pathway targeting “self”-antigens expressed in melanoma/melanocyte. Gene Ther. 12, 1049–1057

 
2004
  1. Obata, C., Zhang, M., Moroi, Y., Hisaeda, H., Tanaka, K., Murata, S., Furue, M., and Himeno, K. (2004) Formalin-fixed tumor cells effectively induce antitumor immunity both in prophylactic and therapeutic conditions. J. Dermatol. Sci. 34, 209–219
  2. Tateishi, Y., Kawabe, Y., Chiba, T., Murata, S., Ichikawa, K., Murayama, A., Tanaka, K., Baba, T., Kato, S., and Yanagisawa, J. (2004) Ligand-dependent switching of ubiquitin-proteasome pathways for estrogen receptor. EMBO J. 23, 4813–4823
  3. Tenno, T., Fujiwara, K., Tochio, H., Iwai, K., Morita, E. H., Hayashi, H., Murata, S., Hiroaki, H., Sato, M., Tanaka, K., and Shirakawa, M. (2004) Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells. 9, 865–875
  4. Zhang, M., Ishii, K., Hisaeda, H., Murata, S., Chiba, T., Tanaka, K., Li, Y., Obata, C., Furue, M., and Himeno, K. (2004) Ubiquitin-fusion degradation pathway plays an indispensable role in naked DNA vaccination with a chimeric gene encoding a syngeneic cytotoxic T lymphocyte epitope of melanocyte and green fluorescent protein. Immunology. 112, 567–574

 
2003
  1. Hirano, Y., Murata, S., Tanaka, K., Shimizu, M., and Sato, R. (2003) Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J. Biol. Chem. 278, 16809–16819
  2. Moriishi, K., Okabayashi, T., Nakai, K., Moriya, K., Koike, K., Murata, S., Chiba, T., Tanaka, K., Suzuki, R., Suzuki, T., Miyamura, T., and Matsuura, Y. (2003) Proteasome activator PA28γ-dependent nuclear retention and degradation of hepatitis C virus core protein. J. Virol. 77, 10237–10249
  3. Murata, S., Chiba, T., and Tanaka, K. (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int. J. Biochem. Cell Biol. 35, 572–578

  
2002
  1. Niwa, J.-I., Ishigaki, S., Hishikawa, N., Yamamoto, M., Doyu, M., Murata, S., Tanaka, K., Taniguchi, N., and Sobue, G. (2002) Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J. Biol. Chem. 277, 36793–36798
  2. Yamano, T., Murata, S., Shimbara, N., Tanaka, N., Chiba, T., Tanaka, K., Yui, K., and Udono, H. (2002) Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J. Exp. Med. 196, 185–196

 
2001
  1. Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO reports. 2, 1133–1138
  2. Murata, S., Udono, H., Tanahashi, N., Hamada, N., Watanabe, K., Adachi, K., Yamano, T., Yui, K., Kobayashi, N., Kasahara, M., Tanaka, K., and Chiba, T. (2001) Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J. 20, 5898–5907
  3. Yawata, M., Murata, S., Tanaka, K., Ishigatsubo, Y., and Kasahara, M. (2001) Nucleotide sequence analysis of the approximately 35-kb segment containing interferon-gamma-inducible mouse proteasome activator genes. Immunogenetics. 53, 119–129

 
2000
  1. Kawahara, H., Kasahara, M., Nishiyama, A., Ohsumi, K., Goto, T., Kishimoto, T., Saeki, Y., Yokosawa, H., Shimbara, N., Murata, S., Chiba, T., Suzuki, K., and Tanaka, K. (2000) Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO J. 19, 4144–4153
  2. Takafuji, S., Miyakuni, Y., Nakagawa, T., Shoji, S., Murata, S., Yamamoto, K., and Ito, K. (2000) Effects of human lung fibroblasts on eosinophil degranulation. Allergy. 55, 1170–1178
  3. Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., Nakamura, K., and Taniguchi, T. (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ . Nature. 408, 600–6

 
1999
  1. Furukawa, H., Murata, S., Yabe, T., Shimbara, N., Keicho, N., Kashiwase, K., Watanabe, K., Ishikawa, Y., Akaza, T., Tadokoro, K., Tohma, S., Inoue, T., Tokunaga, K., Yamamoto, K., Tanaka, K., and Juji, T. (1999) Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. J. Clin. Invest. 103, 755–758
  2. Murata, S., Kawahara, H., Tohma, S., Yamamoto, K., Kasahara, M., Nabeshima, Y., Tanaka, K., and Chiba, T. (1999) Growth retardation in mice lacking the proteasome activator PA28γ. J. Biol. Chem. 274, 38211–38215